Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 39(115), p. 9744-9749, 2018

DOI: 10.1073/pnas.1716252115

Links

Tools

Export citation

Search in Google Scholar

Systematic mapping of free energy landscapes of a growing filamin domain during biosynthesis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Efficient synthesis and folding of proteins, avoiding misfolded states, are central to cell function. As folding may be initiated in parallel with translation, key experimental challenges are to map changes that occur in folding free energy landscapes as translation proceeds and to understand how these landscapes might be modulated by the ribosome and auxiliary factors. Here, we study the length-dependent folding of a domain from a tandem repeat protein and solve the structure of a stable folding intermediate. Although destabilized by the ribosome at equilibrium, modeling of the nonequilibrium folding pathway nevertheless indicates a significant role for proline isomerization during translation. We develop a simple model to explore the impact of cotranslational folding kinetics on misfolding hazards.