Dissemin is shutting down on January 1st, 2025

Published in

American Meteorological Society, Journal of Physical Oceanography, 3(47), p. 667-687, 2017

DOI: 10.1175/jpo-d-16-0125.1

Links

Tools

Export citation

Search in Google Scholar

Mixing Inferred from an Ocean Climatology and Surface Fluxes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractThis study provides observation-based estimates, determined by inverse methods, of horizontal and isopycnal eddy diffusion coefficients KH and KI, respectively, the small-scale mixing coefficient D, and the diathermohaline streamfunction Ψ. The inverse solution of Ψ represents the ocean circulation in Absolute Salinity SA and Conservative Temperature Θ coordinates. The authors suggest that the observation-based estimate of Ψ will be useful for comparison with equivalent diagnostics from numerical climate models. The estimates of KH and KI represent horizontal eddy mixing in the mixed layer and isopycnal eddy mixing in the ocean interior, respectively. This study finds that the solution for D and KH are comparable to existing estimates. The solution for KI is one of the first observation-based global and full-depth constrained estimates of isopycnal mixing and indicates that KI is an order of magnitude smaller than KH. This suggests that there is a large vertical variation in the eddy mixing coefficient, which is generally not included in ocean models. With ocean models being very sensitive to the choice of isopycnal mixing, this result suggests that further investigation of the spatial structure of isopycnal eddy mixing from observations is required.