Published in

Nature Research, Nature Communications, 1(9), 2018

DOI: 10.1038/s41467-018-06112-5

Links

Tools

Export citation

Search in Google Scholar

Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSalmonella strains are traditionally classified into serovars based on their surface antigens. While increasing availability of whole-genome sequences has allowed for more detailed subtyping of strains, links between genotype, serovar, and host remain elusive. Here we reconstruct genome-scale metabolic models for 410 Salmonella strains spanning 64 serovars. Model-predicted growth capabilities in over 530 different environments demonstrate that: (1) the Salmonella accessory metabolic network includes alternative carbon metabolism, and cell wall biosynthesis; (2) metabolic capabilities correspond to each strain’s serovar and isolation host; (3) growth predictions agree with 83.1% of experimental outcomes for 12 strains (690 out of 858); (4) 27 strains are auxotrophic for at least one compound, including l-tryptophan, niacin, l-histidine, l-cysteine, and p-aminobenzoate; and (5) the catabolic pathways that are important for fitness in the gastrointestinal environment are lost amongst extraintestinal serovars. Our results reveal growth differences that may reflect adaptation to particular colonization sites.