American Association for the Advancement of Science, Science Translational Medicine, 145(4), 2012
DOI: 10.1126/scitranslmed.3004145
Full text: Download
β-Amyloid 42 (Aβ42) and β-amyloid 40 (Aβ40), major components of senile plaque deposits in Alzheimer's disease, are considered neurotoxic and proinflammatory. In multiple sclerosis, Aβ42 is up-regulated in brain lesions and damaged axons. We found, unexpectedly, that treatment with either Aβ42 or Aβ40 peptides reduced motor paralysis and brain inflammation in four different models of experimental autoimmune encephalomyelitis (EAE) with attenuation of motor paralysis, reduction of inflammatory lesions in the central nervous system (CNS), and suppression of lymphocyte activation. Aβ42 and Aβ40 treatments were effective in reducing ongoing paralysis induced with adoptive transfer of either autoreactive T helper 1 (T(H)1) or T(H)17 cells. High-dimensional 14-parameter flow cytometry of peripheral immune cell populations after in vivo Aβ42 and Aβ40 treatment revealed substantial modulations in the percentage of lymphoid and myeloid subsets during EAE. Major proinflammatory cytokines and chemokines were reduced in the blood after Aβ peptide treatment. Protection conferred by Aβ treatment did not require its delivery to the brain: Adoptive transfer with lymphocytes from donors treated with Aβ42 attenuated EAE in wild-type recipient mice, and Aβ deposition in the brain was not detected in treated EAE mice by immunohistochemical analysis. In contrast to the improvement in EAE with Aβ treatment, EAE was worse in mice with genetic deletion of the amyloid precursor protein. Therefore, in the absence of Aβ, there is exacerbated clinical EAE disease progression. Because Aβ42 and Aβ40 ameliorate experimental autoimmune inflammation targeting the CNS, we might now consider its potential anti-inflammatory role in other neuropathological conditions.