Dissemin is shutting down on January 1st, 2025

Published in

The Company of Biologists, Journal of Experimental Biology, 11(221), 2018

DOI: 10.1242/jeb.176099

Links

Tools

Export citation

Search in Google Scholar

Smashing mantis shrimp strategically impact shells

Journal article published in 2018 by R. L. Crane ORCID, S. M. Cox ORCID, S. A. Kisare ORCID, S. N. Patek ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Many predators fracture strong mollusk shells, requiring specialized weaponry and behaviors. The current shell fracture paradigm is based on jaw- and claw-based predators that slowly apply forces (high impulse, low peak force). However, predators also strike shells with transient intense impacts (low impulse, high peak force). Toward the goal of incorporating impact fracture strategies into the prevailing paradigm, we measured how mantis shrimp (Neogonodactylus bredini) impact snail shells, tested whether they strike shells in different locations depending on prey shape (Nerita spp., Cenchritis muricatus, Cerithium spp.) and deployed a physical model (Ninjabot) to test the effectiveness of strike locations. We found that, contrary to their formidable reputation, mantis shrimp struck shells tens to hundreds of times while targeting distinct shell locations. They consistently struck the aperture of globular shells and changed from the aperture to the apex of high-spired shells. Ninjabot tests revealed that mantis shrimp avoid strike locations that cause little damage and that reaching the threshold for eating soft tissue is increasingly difficult as fracture progresses. Their ballistic strategy requires feed-forward control, relying on extensive pre-strike set-up, unlike jaw- and claw-based strategies that can use real-time neural feedback when crushing. However, alongside this pre-processing cost to impact fracture comes the ability to circumvent gape limits and thus process larger prey. In sum, mantis shrimp target specific shell regions, alter their strategy depending on shell shape, and present a model system for studying the physics and materials of impact fracture in the context of the rich evolutionary history of predator–prey interactions.