Published in

American Chemical Society, Journal of the American Chemical Society, 16(127), p. 5840-5853, 2005

DOI: 10.1021/ja0424732

Links

Tools

Export citation

Search in Google Scholar

Toward identification of the compound I reactive intermediate in cytochrome P450 chemistry : a QM/MM study of its EPR and Mössbauer parameters

Journal article published in 2005 by Jan C. Schöneboom, Frank Neese ORCID, Walter Thiel ORCID
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Quantum mechanical/molecular mechanical (QM/MM) methods have been used in conjunction with density functional theory (DFT) and correlated ab initio methods to predict the electron paramagnetic resonance (EPR) and Mossbauer (MB) properties of Compound I in P450(cam). For calibration purposes, a small Fe(IV)-oxo complex [Fe(O)(NH(3))(4)(H(2)O)](2+) was studied. The (3)A(2) and (5)A(1) states (in C(4)(v)() symmetry) are found to be within 0.1-0.2 eV. The large zero-field splitting (ZFS) of the (FeO)(2+) unit in the (3)A(2) state arises from spin-orbit coupling with the low-lying quintet and singlet states. The intrinsic g-anisotropy is very small. The spectroscopic properties of the model complex [Fe(O)(TMC)(CH(3)CN)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) are well reproduced by theory. In the model complexes [Fe(O)(TMP)(X)](+) (TMP = tetramesitylporphyrin, X = nothing or H(2)O) the computations again account for the observed spectroscopic properties and predict that the coupling of the (5)A(1) state of the (FeO)(2+) unit to the porphyrin radical leads to a low-lying sextet/quartet manifold approximately 12 kcal/mol above the quartet ground state. The calculations on cytochrome P450(cam), with and without the simulation of the protein environment by point charges, predict a small antiferromagnetic coupling (J approximately -13 to -16 cm(-)(1); H(HDvV) = - 2JS(A)S(B)) and a large ZFS > 15 cm(-)(1) (with E/D approximately 1/3) which will compete with the exchange coupling. This leads to three Kramers doublets of mixed multiplicity which are all populated at room temperature and may therefore contribute to the observed reactivity. The MB and ligand hyperfine couplings ((14)N, (1)H) are fairly sensitive to the protein environment which controls the spin density distribution between the porphyrin ring and the axial cysteinate ligand.