Published in

American Association of Immunologists, The Journal of Immunology, 10(197), p. 4014-4020, 2016

DOI: 10.4049/jimmunol.1601401

Links

Tools

Export citation

Search in Google Scholar

Germinal Center Hypoxia Potentiates Immunoglobulin Class Switch Recombination

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Germinal centers (GCs) are anatomic sites where B cells undergo secondary diversification to produce high-affinity, class-switched Abs. We hypothesized that proliferating B cells in GCs create a hypoxic microenvironment that governs their further differentiation. Using molecular markers, we found GCs to be predominantly hypoxic. Compared to normoxia (21% O2), hypoxic culture conditions (1% O2) in vitro accelerated class switching and plasma cell formation and enhanced expression of GL-7 on B and CD4+ T cells. Reversal of GC hypoxia in vivo by breathing 60% O2 during immunization resulted in reduced frequencies of GC B cells, T follicular helper cells, and plasmacytes, as well as lower expression of ICOS on T follicular helper cells. Importantly, this reversal of GC hypoxia decreased Ag-specific serum IgG1 and reduced the frequency of IgG1+ B cells within the Ag-specific GC. Taken together, these observations reveal a critical role for hypoxia in GC B cell differentiation.