Published in

American Scientific Publishers, Journal of Nanoscience and Nanotechnology, 12(18), p. 8195-8200

DOI: 10.1166/jnn.2018.15799

Links

Tools

Export citation

Search in Google Scholar

Giant Magneto-Impedance (GMI) Effect in Single-Layer Soft Magnetic Film Under Stress

Journal article published in 2018 by L. Zhu, F. Jin, Y. Q. Zhu, J. C. Wang, K. F. Dong, W. Q. Mo, J. L. Song, J. Ouyang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The stress-induced magnetic anisotropy can significantly affect giant magneto-impedance (GMI) effect of the soft magnetic film. This paper is devoted to the GMI effect of the single layer soft magnetic film implied without and with a stress. By simulating a physical model with MATLAB and COMSOL software, the impedance expression of the single layer soft magnetic film and the relation between external magnetic field and magnetic permeability are deduced. We observed that, without a stress, the sensitive region increased firstly and then decreased with the increasing of the excitation current frequency from 1 MHz to 200 MHz. While the film was subjected to the stress in the direction of the current with one end stressed, the stress on the film was gradually reduced from stressed end to free end. Also, the impedance change rate of the film changed when the stress was added, which is similar to the effect of adding a bias magnetic field on the film. More importantly, the addition of stress σ can induce the bias of the GMI measurement range and improve its sensitivity near zero magnetic fields. This may provide a new way for designing a GMI sensor with higher sensitivity and adjustable measurement range.