Published in

American Scientific Publishers, Journal of Nanoscience and Nanotechnology, 12(18), p. 8094-8098

DOI: 10.1166/jnn.2018.16393

Links

Tools

Export citation

Search in Google Scholar

Development of Magnetic-Fluorescent Bifunctional Drug Delivery System with Dual Drug Content and Enhanced Fluorescence

Journal article published in 2018 by Ping Li, Bing Qi, Kun Li, Junwei Xu, Yanhui Song, Danyue Kang, Yubo Fan
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The drug delivery system incorporating magnetic particles and fluorescent marker would be uniquely effective for magnetic targeting and fluorescent tracing. In order for the fluorescent signals to reflect the drug delivery accurately, the separation of the fluorescent label and drugs must be counteracted. The objective of the current study was to design a method of binding drugs to the fluorescent material so that the drug diffusion and delivery could be monitored precisely. To obtain fluorescently-labeled drugs, complexes of the rare earth ion with a single drug benzimidazole (Tb(Bim)3), and with combined drugs benzimidazole and aspirin (TbBim(Asp)2) were generated. Subsequently, the magnetic nanoparticles Fe3O4 and TbBim(Asp)2 were encapsulated in chitosan microspheres to prepare magnetic fluorescent bifunctional drug delivery system Fe3O4/TbBim(Asp)2/Chitosan. The intermediate and final products were analyzed by spectroscopy, X-ray diffraction, magnetometry, and electron microscopy, documenting that the newly developed drug-containing nanoparticles exhibited desirable fluorescent, magnetic, and morphologic properties.