Published in

Hindawi, Oxidative Medicine and Cellular Longevity, (2018), p. 1-10, 2018

DOI: 10.1155/2018/3714725

Links

Tools

Export citation

Search in Google Scholar

Exposure to Ti4Al4V Titanium Alloy Leads to Redox Abnormalities, Oxidative Stress, and Oxidative Damage in Patients Treated for Mandible Fractures

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Due to the high biotolerance, favourable mechanical properties, and osseointegration ability, titanium is the basic biomaterial used in maxillofacial surgery. The passive layer of titanium dioxide on the surface of the implant effectively provides anticorrosive properties, but it can be damaged, resulting in the release of titanium ions to the surrounding tissues. The aim of our work was to evaluate the influence of Ti6Al4V titanium alloy on redox balance and oxidative damage in the periosteum surrounding the titanium miniplates and screws as well as in plasma and erythrocytes of patients with mandibular fractures. The study included 31 previously implanted patients (aged 21–29) treated for mandibular fractures and 31 healthy controls. We have demonstrated increased activity/concentration of antioxidants both in the mandibular periosteum and plasma/erythrocytes of patients with titanium mandibular fixations. However, increased concentrations of the products of oxidative protein and lipid modifications were only observed in the periosteum of the study group patients. The correlation between the products of oxidative modification of the mandible and antioxidants in plasma/erythrocytes suggests a relationship between the increase of oxidative damage at the implantation site and central redox disorders in patients with titanium miniplates and screws.