Dissemin is shutting down on January 1st, 2025

Published in

American Society for Microbiology, Journal of Virology, 10(87), p. 5820-5830, 2013

DOI: 10.1128/jvi.03500-12

Links

Tools

Export citation

Search in Google Scholar

Herpes Simplex Virus 2 Expresses a Novel Form of ICP34.5, a Major Viral Neurovirulence Factor, through Regulated Alternative Splicing

Journal article published in 2013 by Shuang Tang, Nini Guo, Amita Patel, Philip R. Krause ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Herpes simplex virus 1 (HSV-1) and HSV-2, two closely related neurotropic human herpesviruses, achieve neurotropism through ICP34.5, a major viral neurovirulence factor. In this report, in addition to the full-length 38-kDa protein (ICP34.5α), we identified a 28-kDa novel form of ICP34.5 (ICP34.5β) in HSV-2-infected cells. ICP34.5β is translated from unspliced ICP34.5 mRNA, with the retained intron introducing a premature stop codon. Thus, ICP34.5β lacks the C-terminal conserved GADD34 domain but includes 19 additional amino acids encoded by the intron. Although a fraction of both HSV-2 ICP34.5 proteins are detected in the nucleolus, ICP34.5α is predominantly located in cytoplasm, and ICP34.5β is mainly detected more diffusely in the nucleus. ICP34.5β is unable to counteract PKR-mediated eIF2 phosphorylation but does not interfere with ICP34.5α's function in this process. Efficient expression of ICP34.5β in cell culture assays is dependent on viral infection or expression of ICP27, a multifunctional immediate-early gene. The effect of ICP27 on the ICP34.5β protein level is attributed to its selective inhibition of ICP34.5 splicing, which results in increased expression of ICP34.5β but a reduced level of ICP34.5α. The C- terminal KH3 domain but not the RNA binding domain of ICP27 is required for its specific inhibition of ICP34.5 splicing and promotion of ICP34.5β expression. Our results suggest that the expression of ICP34.5α and ICP34.5β is tightly regulated in HSV-2 and likely contributes to viral pathogenesis.