Published in

American Physiological Society, American Journal of Physiology - Heart and Circulatory Physiology, 6(301), p. H2295-H2304

DOI: 10.1152/ajpheart.00624.2011

Links

Tools

Export citation

Search in Google Scholar

Roles for redox mechanisms controlling protein kinase G in pulmonary and coronary artery responses to hypoxia

Journal article published in 2011 by Boon Hwa Neo, Sharath Kandhi ORCID, Michael S. Wolin
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We previously reported that isolated endothelium-removed bovine pulmonary arteries (BPAs) contract to hypoxia associated with removal of peroxide- and cGMP-mediated relaxation. In contrast, bovine coronary arteries (BCAs) relax to hypoxia associated with cytosolic NADPH oxidation coordinating multiple relaxing mechanisms. Since we recently found that H2O2 relaxes BPAs through PKG activation by both soluble guanylate cyclase (sGC)/cGMP-dependent and cGMP-independent thiol oxidation/subunit dimerization mechanisms, we investigated if these mechanisms participate in BPA contraction and BCA relaxation to hypoxia. The contraction of BPA (precontracted with 20 mM KCl) to hypoxia was associated with decreased PKG dimerization and PKG-mediated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. In contrast, exposure of 20 mM KCl-precontracted endothelium-removed BCAs to hypoxia caused relaxation and increased dimerization and VASP phosphorylation. Depletion of sGC by organoid culture of BPAs with an oxidant of the sGC heme (10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) increased aerobic force generation, decreased VASP phosphorylation, and inhibited further contraction to hypoxia and changes in VASP phosphorylation. Thiol reduction with dithiothreitol increased aerobic force in BPAs and decreased PKG dimerization, VASP phosphorylation, and the contraction to hypoxia. Furthermore, PKG-1α and sGC β1-subunit small interfering RNA-transfected BPAs demonstrated increased aerobic K+ force and inhibition of further contraction to hypoxia, associated with an attenuation of H2O2-elicited relaxation and VASP phosphorylation. Thus, decreases in both a sGC/cGMP-dependent and a dimerization-dependent activation of PKG by H2O2 appear to contribute to the contraction of BPAs elicited by hypoxia. In addition, stimulation of PKG activation by dimerization may be important in the relaxation of coronary arteries to hypoxia.