Dissemin is shutting down on January 1st, 2025

Published in

Bentham Science Publishers, Current Medicinal Chemistry, 11(25), p. 1327-1339, 2018

DOI: 10.2174/0929867324666170407125017

Links

Tools

Export citation

Search in Google Scholar

Immune Checkpoint Inhibitors and Cardiac Toxicity: An Emerging Issue

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Although survival of patients with different types of cancer has improved, cardiotoxicity induced by anti-neoplastic drugs remains a critical issue. Cardiac dysfunction after treatment with anthracyclines has historically been a major problem. However, also targeted therapies and biological molecules can induce reversible and irreversible cardiac dysfunction. Over the last years, cancer immunotherapies haverevolutionized the clinical management of a wide spectrum of solid and hematopoietic malignancies previously endowed with poor prognosis. Immune checkpoint inhibitors are at the forefront of immunotherapy: the two most prominent are the targeting of cytotoxic-T-lymphocyte-associated antigen 4 (CTLA- 4) and of programmed cell death 1 (PD-1) and its ligand PD-L1. Ipilimumab (anti-CTLA-4) is the godfather of checkpoint inhibitors, whereas several blocking monoclonal antibodies targeting PD-1 (nivolumab and pembrolizumab) and PD-L1 (atezolizumab, durvalumab, avelumab, and BMS-946559) have been developed. Inhibitors of CTLA-4 and PD-1/PD-L1 pathway can unleash anti-tumor immunity and mediate cancer regressions. Although CTLA-4 inhibitors and PD-1 and PD-L1 blocking agents are frequently associated with a wide spectrum of immune-related adverse events, cardiac toxicity has been underestimated. However, early animal studies have demonstrated that after CTLA-4 inhibition and PD-1 deletion autoimmune myocarditis can occur. Moreover, PD-1 and PD-L1 can be expressed in rodent and human cardiomyocytes. During the last years several cases of fatal heart failure have been documented in melanoma patients treated with checkpoint inhibitors. The recent experience with cardiovascular toxic effects associated with checkpoint inhibitors introduces important concepts biologically and clinically relevant for future oncology trials and clinical practice.