Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-28756-5

Links

Tools

Export citation

Search in Google Scholar

Methyl quantum tunneling in ionic liquid [DMIm][TFSI] facilitated by Bis(trifluoromethane)sulfonimide lithium salt

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWe probe, for the first time, quantum tunneling in the methyl groups of the ionic liquid [DMIm][TFSI] facilitated by the presence of Bis(trifluoromethane)sulfonimide lithium salt. The observation of tunneling is made possible by crystallization, rather than vitrification, of [DMIm][TFSI] at low temperature. Neutron scattering measurements detect quantum tunneling excitations at ~27 μeV at temperatures below 30 K in the presence of LiTFSI at a concentration of 1 mol/kg, but not in salt-free [DMIm][TFSI]. This indicates that the methyl rotational potential barrier is reduced by the presence of LiTFSI, thus bringing the tunneling excitations into the measurable range. The salt-induced reduction of the rotational barrier is corroborated by quasi-elastic scattering data associated with stochastic re-orientation of methyl groups measured between 40 and 60 K.