Published in

Cell Press, Cell Reports, 3(2), p. 433-439, 2012

DOI: 10.1016/j.celrep.2012.08.014

Links

Tools

Export citation

Search in Google Scholar

Regulating Contractility of the Actomyosin Cytoskeleton by pH

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The local interaction of F-actin with myosin-II motor filaments and crosslinking proteins is crucial for the force generation, dynamics, and reorganization of the intracellular cytoskeleton. By using a bottom-up approach, we are able to show that the contractility of reconstituted active actin systems is tightly controlled by the local pH. The pH-dependent intrinsic crossbridge strength of myosin-II is identified to account for a sharp transition of the actin/myosin-II activity from noncontractile to contractile by a change in pH of only 0.1. This pH-dependent contractility is a generic feature, which is observed in all studied crosslinked actin/myosin-II systems. The specific type and concentration of crosslinking protein allows one to sensitively adjust the range of pH where contraction occurs, which can recover the behavior found in Xenopus laevis oocyte extracts. Small variations in pH provide a mechanism of controlling the contractility of cytoskeletal structures, which can be expected to have broad implications in our understanding of cytoskeletal regulation.