Published in

American Society of Clinical Oncology, Journal of Clinical Oncology, 21(36), p. 2135-2144, 2018

DOI: 10.1200/jco.2017.76.3920

Links

Tools

Export citation

Search in Google Scholar

Cardiovascular Disease in Survivors of Childhood Cancer: Insights Into Epidemiology, Pathophysiology, and Prevention

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cardiovascular disease (CVD), which includes cardiomyopathy/heart failure, coronary artery disease, stroke, pericardial disease, arrhythmias, and valvular and vascular dysfunction, is a major concern for long-term survivors of childhood cancer. There is clear evidence of increased risk of CVD largely attributable to treatment exposures at a young age, most notably anthracycline chemotherapy and chest-directed radiation therapy, and compounded by traditional cardiovascular risk factors accrued during decades after treatment exposure. Preclinical studies are limited; thus, it is a high priority to understand the pathophysiology of CVD as a result of anticancer treatments, taking into consideration the growing and developing heart. Recently developed personalized risk prediction models can provide decision support before initiation of anticancer therapy or facilitate implementation of screening strategies in at-risk survivors of cancer. Although consensus-based screening guidelines exist for the application of blood and imaging biomarkers of CVD, the most appropriate timing and frequency of these measures in survivors of childhood cancer are not yet fully elucidated. Longitudinal studies are needed to characterize the prognostic importance of subclinical markers of cardiovascular injury on long-term CVD risk. A number of prevention trials across the survivorship spectrum are under way, which include primary prevention (before or during cancer treatment), secondary prevention (after completion of treatment), and integrated approaches to manage modifiable cardiovascular risk factors. Ongoing multidisciplinary collaborations between the oncology, cardiology, primary care, and other subspecialty communities are essential to reduce therapeutic exposures and improve surveillance, prevention, and treatment of CVD in this high-risk population.