Published in

Wiley, Macromolecular Bioscience, 9(18), p. 1800127

DOI: 10.1002/mabi.201800127

Links

Tools

Export citation

Search in Google Scholar

A General Strategy for Extrusion Bioprinting of Bio-Macromolecular Bioinks through Alginate-Templated Dual-Stage Crosslinking

Journal article published in 2018 by Kai Zhu, Nan Chen, Xiao Liu, Xuan Mu ORCID, Weijia Zhang, Chunsheng Wang, Yu Shrike Zhang ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe recently developed 3D bioprinting technology has greatly improved the ability to generate biomimetic tissues that are structurally and functionally relevant to their human counterparts. The selection of proper biomaterials as the bioinks is a key step toward successful bioprinting. For example, viscosity of a bioink is an important rheological parameter to determine the flexibility in deposition of free‐standing structures and the maintenance of architectural integrity following bioprinting. This requirement, however, has greatly limited the selection of bioinks, especially for those naturally derived due to their commonly low mechanical properties. Here the generalization of a mechanism for extrusion bioprinting of bio‐macromolecular components, mainly focusing on collagen and its derivatives including gelatin and gelatin methacryloyl, is reported. Specifically, a templating strategy is adopted using a composite bioink containing both the desired bio‐macromolecular component and a polysaccharide alginate. The physically crosslinkable alginate component serves as the temporal structural support to stabilize the shape of the construct during bioprinting; upon subsequent chemical or physical crosslinking of the bio‐macromolecular component, alginate can be selectively removed to leave only the desired bio‐macromolecule. It is anticipated that this strategy is general, and can be readily expanded for use of a wide variety of other bio‐macromolecular bioinks.