Published in

Wiley, Small, 4(14), p. 1702926

DOI: 10.1002/smll.201702926

Links

Tools

Export citation

Search in Google Scholar

Stretchable and Energy-Efficient Heating Carbon Nanotube Fiber by Designing a Hierarchically Helical Structure

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractInspired by the hierarchically helical structure of classical thermal insulation material—wool, a stretchable heating carbon nanotube (CNT) fiber is created with excellent mechanical and heating properties. It can be stretched by up to 150% with high stability and reversibility, and a good thermal insulation is achieved from a large amount of formed hierarchically helical voids inside. Impressively, it exhibits ultrafast thermal response over 1000 °C s−1, low operation voltage of several volts, and high heating stability over 5000 cycles. These hierarchically helical CNT fibers, for the first time, are demonstrated as monofilaments to produce soft and lightweight textiles at a large scale with high heating performances.