Dissemin is shutting down on January 1st, 2025

Published in

American Association for Cancer Research, Cancer Research, 1(78), p. 129-142, 2018

DOI: 10.1158/0008-5472.can-16-3507

Links

Tools

Export citation

Search in Google Scholar

A Subpopulation of Stromal Cells Controls Cancer Cell Homing to the Bone Marrow

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Breast and prostate cancer cells home to the bone marrow, where they presumably hijack the hematopoietic stem cell niche. We characterize here the elusive premetastatic niche by examining the role of mesenchymal stromal cells (MSC) in cancer cell homing. Decreasing the number of MSC pharmacologically enhanced cancer cell homing to the bone marrow in mice. In contrast, increasing the number of these MSCs by various interventions including G-CSF administration diminished cancer cell homing. The MSC subpopulation that correlated best with cancer cells expressed stem, endothelial, and pericytic cell markers, suggesting these cells represent an undifferentiated component of the niche with vascular commitment. In humans, a MSC subpopulation carrying markers for endothelial and pericytic cells was lower in the presence of cytokeratin+ cells in bone marrow. Taken together, our data show that a subpopulation of MSC with both endothelial and pericytic cell surface markers suppresses the homing of cancer cells to the bone marrow. Similar to the presence of cytokeratin+ cells in the bone marrow, this MSC subpopulation could prove useful in determining the risk of metastatic disease, and its manipulation might offer a new possibility for diminishing bone metastasis formation. Significance: These findings establish an inverse relationship between a subpopulation of mesenchymal stromal cells and cancer cells in the bone marrow. Cancer Res; 78(1); 129–42. ©2017 AACR.