Published in

American Association for Cancer Research, Clinical Cancer Research, 13(24), p. 3036-3045, 2018

DOI: 10.1158/1078-0432.ccr-17-2257

Links

Tools

Export citation

Search in Google Scholar

CD103+ Tumor-Resident CD8+ T Cells Are Associated with Improved Survival in Immunotherapy-Naïve Melanoma Patients and Expand Significantly During Anti–PD-1 Treatment

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: Therapeutic blockade of immune checkpoints has revolutionized cancer treatment. Durable responses, however, occur in less than half of those treated, and efforts to improve treatment efficacy are confounded by a lack of understanding of the characteristics of the cells that initiate antitumor immune response. Patients and Methods: We performed multiparameter flow cytometry and quantitative multiplex immunofluorescence staining on tumor specimens from immunotherapy-naïve melanoma patients and longitudinal biopsy specimen obtained from patients undergoing anti–PD-1 therapy. Results: Increased numbers of CD69+CD103+ tumor-resident CD8+ T cells were associated with improved melanoma-specific survival in immunotherapy-naïve melanoma patients. Local IL15 expression levels strongly correlated with these tumor-resident T-cell numbers. The expression of several immune checkpoints including PD-1 and LAG3 was highly enriched in this subset, and these cells significantly expanded early during anti–PD-1 immunotherapy. Conclusions: Tumor-resident CD8+ T-cell numbers are more prognostic than total CD8+ T cells in metastatic melanoma. In addition, they are likely to initiate response to anti–PD-1 and anti–LAG-3 treatments. We propose that the immune profile of these cells prior to treatment could inform strategies for immune checkpoint blockade. Clin Cancer Res; 24(13); 3036–45. ©2018 AACR.