Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 28(114), p. 7228-7233, 2017

DOI: 10.1073/pnas.1702208114

Links

Tools

Export citation

Search in Google Scholar

DNA cytoskeleton for stabilizing artificial cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Although liposomes and lipid droplets have been used for numerous applications, the fragility of the lipid membrane causes an unintentional collapse, which is problematic for advanced applications. To solve this problem, we constructed an artificial cytoskeleton with DNA nanotechnology (a DNA cytoskeleton). The DNA cytoskeleton is a DNA network formed underneath the membrane of positively charged lipids through electrostatic interactions without the need for special handling. The DNA cytoskeleton significantly improves mechanical stability and, therefore, confers tolerance against osmotic shock to liposomes like the cytoskeleton in live cells. Because of its biocompatibility and the easiness of implementing design changes, the DNA cytoskeleton could become a tool for great stabilizer of liposomes and lipid droplets.