Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Journal of Composite Materials, 25(52), p. 3539-3547, 2018

DOI: 10.1177/0021998318797394

Links

Tools

Export citation

Search in Google Scholar

Dynamic crack propagation from a circular defect in a unidirectional carbon fiber reinforced plastic composite

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A single-ply unidirectional IM7/8552 carbon fiber reinforced plastic composite with artificially introduced circular defects is subjected to dynamic tensile loading using a modified Kolsky tension bar. A high-speed X-ray phase contrast imaging method is integrated with the Kolsky bar setup to record the crack initiation from the defects and subsequent propagation in the material in real time during the tensile loading. The tensile loading was applied either in longitudinal (0° to fibers) or transverse (90° to fibers) direction of the specimens. Shear failure of the matrix and axial splitting along the loading/fiber direction were observed in longitudinal specimens to initiate from the edge of the artificial circular defects. Debonding of fiber and matrix was observed in transverse specimens, which initiated from the top and bottom edge of the hole. The dynamic tensile loading history during the crack propagation was recorded using a piezoelectric load cell and synchronized with the observed damage and failure processes.