Published in

De Gruyter, Journal of Polymer Engineering, 8(37), p. 741-746, 2017

DOI: 10.1515/polyeng-2016-0194

Links

Tools

Export citation

Search in Google Scholar

3D printing of hydroxyapatite polymer-based composites for bone tissue engineering

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Skeletal defects reconstruction, using custom-made substitutes, represents a valid solution to replacing lost and damaged anatomical bone structures, renew their original function, and at the same time, restore the original aesthetic aspect. Rapid prototyping (RP) techniques allow the construction of complex physical models based on 3D clinical images. However, RP machines usually work with synthetic polymers; therefore, producing custom-made scaffolds using a biocompatible material directly by RP is an exciting challenge. The aim of the present work is to investigate the potentiality of 3D printing as a manufacturing method to produce an osteogenic hydroxyapatite-polylactic acid bone graft substitute.