Published in

Wiley, Journal of Polymer Science Part A: Polymer Chemistry, 2(52), p. 287-294, 2013

DOI: 10.1002/pola.27002

Links

Tools

Export citation

Search in Google Scholar

Water-Soluble, Biocompatible Polyphosphazenes with Controllable and pH-Promoted Degradation Behavior

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The synthesis of a series of novel, water-soluble poly(organophosphazenes) prepared via living cationic polymerization is presented. The degradation profiles of the polyphosphazenes prepared are analyzed by GPC, (31)P NMR spectroscopy, and UV-Vis spectroscopy in aqueous media and show tunable degradation rates ranging from days to months, adjusted by subtle changes to the chemical structure of the polyphosphazene. Furthermore, it is observed that these polymers demonstrate a pH-promoted hydrolytic degradation behavior, with a remarkably faster rate of degradation at lower pH values. These degradable, water soluble polymers with controlled molecular weights and structures could be of significant interest for use in aqueous biomedical applications, such as polymer therapeutics, in which biological clearance is a requirement and in this context cell viability tests are described which show the non-toxic nature of the polymers as well as their degradation intermediates and products.