Published in

Public Library of Science, PLoS ONE, 9(9), p. e106959, 2014

DOI: 10.1371/journal.pone.0106959

Links

Tools

Export citation

Search in Google Scholar

Dynamics of Cell Shape Inheritance in Fission Yeast

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This is the published manuscript. It has been published by PLoS in PLoS ONE and is available online here: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0106959. ; Every cell has a characteristic shape key to its fate and function. That shape is not only the product of genetic design and of the physical and biochemical environment, but it is also subject to inheritance. However, the nature and contribution of cell shape inheritance to morphogenetic control is mostly ignored. Here, we investigate morphogenetic inheritance in the cylindrically-shaped fission yeast Schizosaccharomyces pombe. Focusing on sixteen different ?curved? mutants - a class of mutants which often fail to grow axially straight ? we quantitatively characterize their dynamics of cell shape inheritance throughout generations. We show that mutants of similar machineries display similar dynamics of cell shape inheritance, and exploit this feature to show that persistent axial cell growth in S. pombe is secured by multiple, separable molecular pathways. Finally, we find that one of those pathways corresponds to the swc2-swr1-vps71 SWR1/SRCAP chromatin remodelling complex, which acts additively to the known mal3-tip1-mto1-mto2 microtubule and tea1-tea2-tea4-pom1 polarity machineries.