Published in

Oxford University Press (OUP), Cerebral Cortex

DOI: 10.1093/cercor/bhy240

Links

Tools

Export citation

Search in Google Scholar

Hierarchical brain network for face and voice integration of emotion expression

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The brain has separate specialized computational units to process faces and voices located in occipital and temporal cortices. However, humans seamlessly integrate signals from the faces and voices of others for optimal social interaction. How are emotional expressions, when delivered by different sensory modalities (faces and voices), integrated in the brain? In this study, we characterized the brains’ response to faces, voices, and combined face–voice information (congruent, incongruent), which varied in expression (neutral, fearful). Using a whole-brain approach, we found that only the right posterior superior temporal sulcus (rpSTS) responded more to bimodal stimuli than to face or voice alone but only when the stimuli contained emotional expression. Face- and voice-selective regions of interest, extracted from independent functional localizers, similarly revealed multisensory integration in the face-selective rpSTS only; further, this was the only face-selective region that also responded significantly to voices. Dynamic causal modeling revealed that the rpSTS receives unidirectional information from the face-selective fusiform face area, and voice-selective temporal voice area, with emotional expression affecting the connection strength. Our study promotes a hierarchical model of face and voice integration, with convergence in the rpSTS, and that such integration depends on the (emotional) salience of the stimuli.