Published in

Springer, Euphytica, 1(201), p. 67-78, 2014

DOI: 10.1007/s10681-014-1183-4

Links

Tools

Export citation

Search in Google Scholar

Development of a SNP genotyping panel for detecting polymorphisms in Oryza glaberrima/O. sativa interspecific crosses

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Oryza glaberrima accessions harbor genes for tolerance to abiotic stresses such as mineral deficiency in problem soils. This genetic potential could be exploited in interspecific crosses with Oryza sativa, as in the case of the 'New Rice for Africa' (NERICA) varieties; however, to attain this goal it would be desirable to develop a high-throughput marker system to specifically detect O. glaberrima introgressions in an O. sativa background. Therefore, a single nucleotide polymorphism (SNP) genotyping analysis of an O. glaberrima accession (CG14) with two O. sativa lines (WAB56-104 and WAB181-18) was performed on a genome-wide basis. Comparison of CG14 and the WAB lines resulted in a set of 9,523 polymorphic SNPs which would be suitable to detect O. glaberrima introgressions in upland NERICAs. In addition, a set of 1,540 polymorphic SNPs between O. glaberrima versus O. sativa was identified. A subset of SNPs which were evenly distributed in the genome was then used to design a flexible and cost-effective SNP genotyping panel using the Competitive Allele-Specific PCR technology (KASP). This SNP genotyping panel consists of 2,015 SNPs successfully converted into KASP markers, providing 745 polymorphic SNPs for the parents O. glaberrima CG14/O. sativa WAB56-104 (upland NERICA), and 752 for O. glaberrima TOG5681/O. sativa IR64 (lowland NERICA). KASP markers were successfully validated by mapping O. glaberrima introgressions in NERICA-derived breeding lines. This new SNP genotyping panel will be useful in modern breeding applications such as QTL mapping and/or marker-assisted selection.