Published in

Nature Research, Nature Climate Change, 7(4), p. 605-609, 2014

DOI: 10.1038/nclimate2239

Links

Tools

Export citation

Search in Google Scholar

Payback time for soil carbon and sugar-cane ethanol

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Thee effects of land-use change (LUC) on soil carbon (C) balance has to be taken into account in calculating the CO2 savings attributed to bioenergy crops(1-3). There have been few direct fieldmeasurements that quantify thee effects of LUC on soil C for the most common land-use transitions into sugar cane in Brazil, the world's largest producer(1-3). We quantified the C balance for LUC as a net loss (carbon debt) or net gain (carbon credit) in soil C for sugar-cane expansion in Brazil. We sampled 135 field sites to 1 m depth, representing three major LUC scenarios. Our results demonstrate that soil C stocks decrease following LUC from native vegetation and pastures, and increase where cropland is converted to sugar cane. The payback time for the soil C debt was eight years for native vegetation and two to three years for pastures. With an increasing need for biofuels and the potential for Brazil to help meet global demand(4), our results will be invaluable for guiding expansion policies of sugar-cane production towards greater sustainability.