Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical review B, 8(88)

DOI: 10.1103/physrevb.88.081401

Links

Tools

Export citation

Search in Google Scholar

Anisotropic Eliashberg function and electron phonon coupling in doped graphene

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We investigate, with high-resolution angle-resolved photoemission spectroscopy, the spectral function of potassium-doped quasi-free-standing graphene on Au. Angle-dependent x-ray photoemission and density functional theory calculations demonstrate that potassium intercalates into the graphene/Au interface, leading to an upshift of the K-derived electronic band above the Fermi level. This empty band is what makes this system perfectly suited to disentangle the contributions to electron-phonon coupling coming from the π band and K-derived bands. From a self-energy analysis we find an anisotropic electron-phonon coupling strength λ of 0.1 (0.2) for the KΓ (KM) high-symmetry directions in momentum space, respectively. Interestingly, the high-energy part of the Eliashberg function which relates to graphene's optical phonons is equal in both directions but only in KM does an additional low-energy part appear.