Published in

Society for Neuroscience, Journal of Neuroscience, 13(32), p. 4600-4609, 2012

DOI: 10.1523/jneurosci.6184-11.2012

Links

Tools

Export citation

Search in Google Scholar

Large Membrane Domains in Hair Bundles Specify Spatially Constricted Radixin Activation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The plasma membrane of vertebrate hair bundles interacts intimately with the bundle cytoskeleton to support mechanotransduction and homeostasis. To determine the membrane composition of bundles, we used lipid mass spectrometry with purified chick vestibular bundles. While the bundle glycerophospholipids and acyl chains resemble those of other endomembranes, bundle ceramide and sphingomyelin nearly exclusively contain short-chain, saturated acyl chains. Confocal imaging of isolated bullfrog vestibular hair cells shows that the bundle membrane segregates spatially into at least three large structural and functional domains. One membrane domain, including the stereocilia basal tapers and ∼1 μm of the shaft, the location of the ankle links, is enriched in the lipid phosphatase PTPRQ (protein tyrosine phosphatase Q) and polysialylated gangliosides. The taper domain forms a sharp boundary with the shaft domain, which contains the plasma membrane Ca2+-ATPase isoform 2 (PMCA2) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]; moreover, a tip domain has elevated levels of cholesterol, PMCA2, and PI(4,5)P2. Protein mass spectrometry shows that bundles from chick vestibular hair cells contain a complete set of proteins that transport, synthesize, and degrade PI(4,5)P2. The membrane domains have functional significance; radixin, essential for hair-bundle stability, is activated at the taper–shaft boundary in a PI(4,5)P2-dependent manner, allowing assembly of protein complexes at that site. Membrane domains within stereocilia thus define regions within hair bundles that allow compartmentalization of Ca2+extrusion and assembly of protein complexes at discrete locations.