Published in

Human Kinetics, International Journal of Sport Nutrition and Exercise Metabolism, 3(29), p. 254-258, 2019

DOI: 10.1123/ijsnem.2018-0094

Links

Tools

Export citation

Search in Google Scholar

Increase of Glucose Uptake in Human Bone Marrow With Increasing Exercise Intensity

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Human bone marrow is a metabolically active tissue that responds to acute low-intensity exercise by having increased glucose uptake (GU). Here, the authors studied whether bone marrow GU increases more with increased exercise intensities. Femoral bone marrow GU was measured using positron emission tomography and [18F]-fluorodeoxyglucose in six healthy young men during cycling at intensities of 30% (low), 55% (moderate), and 75% (high) of maximal oxygen consumption on three separate days. Bone marrow GU at low was 17.2 µmol·kg−1·min−1 (range 9.0–25.4) and increased significantly (p = .003) at moderate (31.2 µmol·kg−1·min−1, 22.9–39.4) but was not significant from moderate to high (37.4 µmol·kg−1·min−1, 29.0–45.7, p = .26). Furthermore, the ratio between bone and muscle GU decreased from low to moderate exercise intensity (p < .01) but not (p = .99) from moderate to high exercise intensity. In conclusion, these results show that although the increase is not as large as observed in exercising skeletal muscle, GU in femoral bone marrow increases with increasing exercise intensity at least from low- to moderate-intensity effort, which may be important for bone and whole-body metabolic health.