Dissemin is shutting down on January 1st, 2025

Published in

International Union of Crystallography, Acta Crystallographica Section C: Structural Chemistry, 8(74), p. 981-985, 2018

DOI: 10.1107/s2053229618010264

Links

Tools

Export citation

Search in Google Scholar

Synthesis, crystal structure and topological analysis of a three-dimensional polymeric network based on zinc(II), potassium and 5-sulfobenzene-1,3-dicarboxylate (SIP)

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aromatic polycarboxylate linkers provide structural rigidity and strong interactions among the metal centre and the carboxylate O atoms. A new three-dimensional coordination polymer namely, catena-poly[potassium [tetraaqua(μ-5-sulfobenzene-1,3-dicarboxylato)zinc(II)]], {K[Zn(C8H3O7S)(H2O)4]} n or {K[Zn(SIP)(H2O)4]} n , where SIP is 5-sulfobenzene-1,3-dicarboxylate or 5-sulfoisophthalate, was obtained and characterized by elemental analysis and IR vibrational spectroscopy, and the single-crystal structure was determined by X-ray diffraction analysis. The compound crystallizes in the monoclinic space group P21/n with Z = 4. Topological analysis revealed that K—O interactions form a two-dimensional network, which is uninodal 4-connected and can be described with a point symbol (44.62), and this plane network is classified as sql/Shubnikov. The layers are connected by Zn2+ ions coordinated to the SIP linker, forming a three-dimensional network. This net is a trinodal (3,5,6)-connected system with point symbol (3.44.52.62.73.83).(3.44.52.62.7).(3.72).