Published in

Association for Research in Vision and Ophthalmology, Investigative Ophthalmology & Visual Science, 11(48), p. 4989

DOI: 10.1167/iovs.07-0654

Links

Tools

Export citation

Search in Google Scholar

Compositional differences between infant and adult human corneal basement membranes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

PURPOSE. Adult human corneal epithelial basement membrane ( EBM) and Descemet's membrane ( DM) components exhibit heterogeneous distribution. The purpose of the study was to identify changes of these components during postnatal corneal development. METHODS. Thirty healthy adult corneas and 10 corneas from 12-day- to 3-year-old children were studied by immunofluorescence with antibodies against BM components. RESULTS. Type IV collagen composition of infant corneal central EBM over Bowman's layer changed from alpha 1-alpha 2 to alpha 3-alpha 4 chains after 3 years of life; in the adult, alpha 1-alpha 2 chains were retained only in the limbal BM. Laminin alpha 2 and beta 2 chains were present in the adult limbal BM where epithelial stem cells are located. By 3 years of age, beta 2 chain appeared in the limbal BM. In all corneas, limbal BM contained laminin gamma 3 chain. In the infant DM, type IV collagen alpha 1-alpha 6 chains, perlecan, nidogen-1, nidogen-2, and netrin-4 were found on both faces, but they remained only on the endothelial face of the adult DM. The stromal face of the infant but not the adult DM was positive for tenascin-C, fibrillin-1, SPARC, and laminin-332. Type VIII collagen shifted from the endothelial face of infant DM to its stromal face in the adult. Matrilin-4 largely disappeared after the age of 3 years. CONCLUSIONS. The distribution of laminin gamma 3 chain, nidogen-2, netrin-4, matrilin-2, and matrilin-4 is described in the cornea for the first time. The observed differences between adult and infant corneal BMs may relate to changes in their mechanical strength, corneal cell adhesion and differentiation in the process of postnatal corneal maturation.