Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Chemistry of Materials, 1(25), p. 106-112, 2012

DOI: 10.1021/cm3033498

Links

Tools

Export citation

Search in Google Scholar

Successive layer-by-layer strategy for multi-shell epitaxial growth: Shell thickness and doping position dependence in upconverting optical properties

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

One pot successive layer-by-layer (SLBL) strategy is introduced to fabricate the core/shell upconversion nanoparticles (NPs) for the first time by using high boiling-point Re-OA (rare-earth chlorides dissolved in oleic acid at 140 °C) and Na-TFA-OA (sodium trifluoroacetate dissolved in oleic acid at room temperature) as shell precursor solutions. This protocol is flexible to deposit uniform multishell on both hexagonal (β) and cubic (α) phase cores by successive introducing of the shell precursor solutions. Shell thickness of the obtained NPs with narrow size distribution (σ < 10%) can be well controlled from 1 monolayer (0.36 nm) to more than 20 monolayers (8 nm) by simply tuning the amounts of the shell precursors. Furthermore, the tunable doping positions (core doping and shell doping) can also be achieved by adjusting the species and addition sequence of the shell precursors. As a result of the high quality uniform shell and advanced core/shell structures, the optical properties of the obtained core/shell NPs could be improved in upconversion luminescence efficiency (up to 0.51 ± 0.08%), stability (more resistant to quenching by water) and multicolor luminescence emission.