Published in

Oxford University Press, The Journal of Clinical Endocrinology & Metabolism, 2(95), p. 699-706, 2010

DOI: 10.1210/jc.2009-1907

Links

Tools

Export citation

Search in Google Scholar

Fat Mass Exerts a Greater Effect on Cortical Bone Mass in Girls than Boys

Journal article published in 2009 by Adrian Sayers, Jonathan H. Tobias ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Context: It is unclear whether fat mass (FM) and lean mass (LM) differ in the way they influence cortical bone development in boys and girls. Objective: The aim of the study was to investigate the contributions of total body FM and LM to parameters related to cortical bone mass and geometry. Design/Setting: We conducted a longitudinal birth cohort study, the Avon Longitudinal Study of Parents and Children. Participants: A total of 4005 boys and girls (mean age, 15.5 yr) participated in the study. Outcome Measures: We measured cortical bone mass, cortical bone mineral content (BMCC), cortical bone mineral density, periosteal circumference (PC), and endosteal circumference by tibial peripheral quantitative computed tomography. Results: LM had a similar positive association with BMCC in boys and girls [regression coefficients with 95% confidence interval (CI); P for gender interactions: boys/girls, 0.952 (0.908, 0.997); P = 0.85]. However, the mechanisms by which LM influenced bone mass differed according to gender because LM was positively associated with PC more strongly in girls [boys, 0.579 (0.522, 0.635); girls, 0.799 (0.722, 0.875); P < 0.0001], but was only associated with cortical bone mineral density in boys [boys, 0.443 (0.382, 0.505); girls, 0.014 (−0.070, 0.097); P < 0.0001]. There was a stronger positive association between FM and BMCC in girls [boys, 0.227 (0.185, 0.269); girls, 0.355 (0.319, 0.392); P < 0.0001]. This reflected both a greater positive association of FM with PC in girls [boys, 0.213 (0.174, 0.253); girls, 0.312 (0.278, 0.347); P = 0.0002], and a stronger negative association with endosteal circumferencePC [boys, −0.059 (−0.096, 0.021); girls, −0.181 (−0.215, −0.146); P < 0.0001]. Conclusions: Whereas LM stimulates the accrual of cortical bone mass to a similar extent in boys and girls, FM is a stronger stimulus for accrual of cortical bone mass in girls, reflecting a greater tendency in females for FM to stimulate periosteal growth and suppress endosteal expansion.