Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 16(115), 2018

DOI: 10.1073/pnas.1714376115

Links

Tools

Export citation

Search in Google Scholar

Accurate and sensitive quantification of protein-DNA binding affinity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance One-tenth of human genes produce proteins called transcription factors (TFs) that bind to our genome and read the local DNA sequence. They work together to regulate the degree to which each gene is expressed. The affinity with which DNA is bound by a particular TF can vary more than a thousand-fold with different DNA sequences. This study presents the first computational method able to quantify the sequence-affinity relationship almost perfectly over the full affinity range. It achieves this by analyzing data from experiments that use massively parallel DNA sequencing to comprehensively probe protein–DNA interactions. Strikingly, it can accurately predict the effect in vivo of DNA mutations on gene expression levels in fly embryos even for very-low-affinity binding sites.