Published in

Canadian Science Publishing, Canadian Journal of Animal Science

DOI: 10.1139/cjas-2018-0063

Links

Tools

Export citation

Search in Google Scholar

Effects of different vehiculization strategies for the allium derivative propyl propane thiosulfonate during dynamic simulation of the pig gastrointestinal tract

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper evaluates the bioavailability of allium derivative propyl propane thiosulfonate (PTSO) in the pig gastrointestinal tract by means of an in vitro dynamic gastrointestinal tract simulator system (GITSS). The GITSS is based on a membrane bioreactor comprising a continuous stirred-tank reactor connected in series to a continuous plug-flow tubular reactor. Bioavailability values have been evaluated for different vehiculization strategies, including mere carriers such as polyethylene glycol sorbitan monooleate (a nonionic surfactant also known as Tween 80) and encapsulation matrices (β-cyclodextrin vs. mono- and di-glycerides of edible fatty acids mixed with hydrogenated sunflower oil) and compared with the absorption of free PTSO. The net absorbed amount of PTSO in the GITSS when Tween 80 was used as a carrier was over 3.5 times higher than the one for free PTSO. Neither the encapsulated PTSO in β-cyclodextrin nor by means of mono- and di-glycerides of fatty acids plus a vegetable oil succeeded to improve absorption values for free PTSO. These promising results indicate that Tween 80 provides an interesting and high resistance to the PTSO molecule against the simulated digestive conditions in the stomach, and thus it enables favorably the subsequent absorption process of PTSO along the intestine.