Published in

American Institute of Physics, Applied Physics Letters, 15(97), p. 152901

DOI: 10.1063/1.3499658

Links

Tools

Export citation

Search in Google Scholar

Strain-driven phase transitions and associated dielectric/piezoelectric anomalies in BiFeO3 thin films

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Strain-driven phase transitions and related intrinsic polarization, dielectric, and piezoelectric properties for single-domain films were studied for BiFeO 3 using phenomenological Landau–Devonshire theory. A stable and mixed structure between tetragonal and rhombohedral-like (monoclinic) phases is predicted at a compressive misfit strain of um=-0.0382 without an energy barrier. For a tensile misfit strain of um=0.0272 , another phase transition between the monoclinic and orthorhombic phases was predicted with sharply high dielectric and piezoelectric responses.