Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 5(115), p. 879-884, 2018

DOI: 10.1073/pnas.1715477115

Links

Tools

Export citation

Search in Google Scholar

Electron mean-free-path filtering in Dirac material for improved thermoelectric performance

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Using ab initio simulations, we uncover the electron mean-free-path (MFP) spectrum in Dirac material and specifically show how the thermoelectric efficiency can greatly benefit from a distinct, monotonically decreasing trend of electron MFPs arising from the linear energy-momentum dispersion implied by the Dirac band topology. In the past, it was generally assumed that for the nanostructuring approach to be effective, one should design nanostructures to have characteristic length larger than the electron MFP but smaller than the phonon MFP to reduce thermal conductivity. Our results show that enhancement in thermoelectric performance can be achieved in Dirac materials even when they are smaller than the electron MFP by selectively filtering out long-MFP electrons that are harmful to the Seebeck coefficient.