Published in

American Diabetes Association, Diabetes, 8(66), p. 2175-2187, 2017

DOI: 10.2337/db16-1355

Links

Tools

Export citation

Search in Google Scholar

Chronic β-Cell Depolarization Impairs β-Cell Identity by Disrupting a Network of Ca2+-Regulated Genes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We used mice lacking Abcc8, a key component of the β-cell KATP-channel, to analyze the effects of a sustained elevation in the intracellular Ca2+ concentration ([Ca2+]i) on β-cell identity and gene expression. Lineage tracing analysis revealed the conversion of β-cells lacking Abcc8 into pancreatic polypeptide cells but not to α- or δ-cells. RNA-sequencing analysis of FACS-purified Abcc8−/− β-cells confirmed an increase in Ppy gene expression and revealed altered expression of more than 4,200 genes, many of which are involved in Ca2+ signaling, the maintenance of β-cell identity, and cell adhesion. The expression of S100a6 and S100a4, two highly upregulated genes, is closely correlated with membrane depolarization, suggesting their use as markers for an increase in [Ca2+]i. Moreover, a bioinformatics analysis predicts that many of the dysregulated genes are regulated by common transcription factors, one of which, Ascl1, was confirmed to be directly controlled by Ca2+ influx in β-cells. Interestingly, among the upregulated genes is Aldh1a3, a putative marker of β-cell dedifferentiation, and other genes associated with β-cell failure. Taken together, our results suggest that chronically elevated β-cell [Ca2+]i in Abcc8−/− islets contributes to the alteration of β-cell identity, islet cell numbers and morphology, and gene expression by disrupting a network of Ca2+-regulated genes.