Dissemin is shutting down on January 1st, 2025

Published in

American Geophysical Union, Geophysical Research Letters, 14(43), p. 7424-7432

DOI: 10.1002/2016gl069868

Links

Tools

Export citation

Search in Google Scholar

The self‐secondary crater population of the Hokusai crater on Mercury

Journal article published in 2016 by Zhiyong Xiao, Nils C. Prieur ORCID, Stephanie C. Werner
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractWhether or not self‐secondaries dominate small crater populations on continuous ejecta deposits and floors of fresh impact craters has long been a controversy. This issue potentially affects the age determination technique using crater statistics. Here the self‐secondary crater population on the continuous ejecta deposits of the Hokusai crater on Mercury is unambiguously recognized. Superposition relationships show that this population was emplaced after both the ballistic sedimentation of excavation flows and the subsequent veneering of impact melt, but it predated the settlement and solidification of melt pools on the crater floor. Fragments that formed self‐secondaries were launched via impact spallation with large angles. Complex craters on the Moon, Mercury, and Mars probably all have formed self‐secondaries populations. Dating young craters using crater statistics on their continuous ejecta deposits can be misleading. Impact melt pools are less affected by self‐secondaries. Overprint by subsequent crater populations with time reduces the predominance of self‐secondaries.