Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 41(114), 2017

DOI: 10.1073/pnas.1705821114

Links

Tools

Export citation

Search in Google Scholar

Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Our experiments provide the analysis of lipid metabolite circadian oscillations in a cellular system synchronized in vitro, suggesting cell-autonomous diurnal changes in lipid profiles independent of feeding. Moreover, our work represents a comprehensive comparison between the lipid composition of human skeletal muscle derived from sedentary healthy adults, receiving hourly isocaloric solutions, and human primary skeletal myotubes cultured in vitro. A substantial number of lipid metabolites, in particular membrane lipids, exhibited oscillatory patterns in muscle tissue and in myotube cells, where they were blunted upon cell-autonomous clock disruption. As lipid oscillations in skeletal muscle membrane lipids may impact on insulin signaling and on the development of insulin resistance, studying the temporal lipid composition of human muscle is therefore of utmost importance.