Published in

American Society of Nephrology, Journal of the American Society of Nephrology, 7(21), p. 1103-1114, 2010

DOI: 10.1681/asn.2009090984

Links

Tools

Export citation

Search in Google Scholar

IgG Glycan Hydrolysis Attenuates ANCA-Mediated Glomerulonephritis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Anti-neutrophil cytoplasmic autoantibodies (ANCA) directed against myeloperoxidase (MPO) and proteinase 3 (Pr3) are considered pathogenic in ANCA-associated necrotizing and crescentic glomerulonephritis (NCGN) and vasculitis. Modulation of ANCA IgG glycosylation may potentially reduce its pathogenicity by abolishing Fc receptor–mediated activation of leukocytes and complement. Here, we investigated whether IgG hydrolysis by the bacterial enzyme endoglycosidase S (EndoS) attenuates ANCA-mediated NCGN. In vitro, treatment of ANCA IgG with EndoS significantly attenuated ANCA-mediated neutrophil activation without affecting antigen-binding capacity. In a mouse model of anti-MPO IgG/LPS-induced NCGN, we induced disease with either unmodified or EndoS-treated (deglycosylated) anti-MPO IgG. In separate experiments, we administered EndoS systemically after disease induction with unmodified anti-MPO IgG. Pretreatment of anti-MPO IgG with EndoS reduced hematuria, leukocyturia, and albuminuria and attenuated both neutrophil influx and formation of glomerular crescents. After inducing disease with unmodified anti-MPO IgG, systemic treatment with EndoS reduced albuminuria and glomerular crescent formation when initiated after 3 but not 24 hours. In conclusion, IgG glycan hydrolysis by EndoS attenuates ANCA-induced neutrophil activation in vitro and prevents induction of anti-MPO IgG/LPS-mediated NCGN in vivo. Systemic treatment with EndoS early after disease induction attenuates the development of disease. Thus, modulation of IgG glycosylation is a promising strategy to interfere with ANCA-mediated inflammatory processes.