Published in

SAGE Publications, Textile Research Journal, 21(88), p. 2493-2498, 2017

DOI: 10.1177/0040517517723026

Links

Tools

Export citation

Search in Google Scholar

Self-cleaning effect of electrospun poly (1,4-cyclohexanedimethylene isosorbide terephthalate) nanofibers embedded with zinc oxide nanoparticles

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study examined the photocatalytic self-cleaning of novel nanofibers of co-polyester poly(1,4-cyclohexanedimethylene isosorbide terephthalate) (PICT). To obtain the self-cleaning property, zinc oxide (ZnO) nanoparticles were blended into the solution of PICT at five different concentrations. The morphology of the nanofibers was analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the degradation spectrum of the target dyes was confirmed by Fourier Transform Infrared (FT-IR) spectroscopy. Especially in the TEM images, there was clear evidence of a uniform dispersion of the ZnO nanoparticles embedded in the nanofibers. As the concentration of ZnO increased to 9 wt%, there was a greater dispersion of the ZnO nanoparticles on the nanofibers. The photocatalytic activity indicated that more efficient self-cleaning occurred at an irradiation time of 3 hours and a 9% concentration of ZnO nanoparticles in the nanofibers. We achieved around 99% self-cleaning efficiency from these nanofibers.