Dissemin is shutting down on January 1st, 2025

Published in

European Respiratory Society, European Respiratory Journal, 4(48), p. 1127-1136

DOI: 10.1183/13993003.01814-2015

Links

Tools

Export citation

Search in Google Scholar

Docosahexaenoic acid causes rapid pulmonary arterial relaxation via KCa channel-mediated hyperpolarisation in pulmonary hypertension

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cardioprotective benefits of ω-3 fatty acids such as docosahexaenoic acid (DHA) are well established, but the regulatory effect of DHA on vascular tone and pressure in pulmonary hypertension is largely unknown.As DHA is a potent regulator of K+ channels, we hypothesised that DHA modulates the membrane potential of pulmonary artery smooth muscle cells (PASMCs) through K+ channels and thus exerts its effects on pulmonary vascular tone and pressure.We show that DHA caused dose-dependent activation of the calcium-activated K+ (KCa) current in primary human PASMCs and endothelium-dependent relaxation of pulmonary arteries. This vasodilation was significantly diminished in KCa–/– (Kcnma1–/–) mice. In vivo, acute DHA returned the right ventricular systolic pressure in the chronic hypoxia-induced pulmonary hypertension animal model to the level of normoxic animals. Interestingly, in idiopathic pulmonary arterial hypertension the KCa channels and their subunits were upregulated. DHA activated KCa channels in these human PASMCs and hyperpolarised the membrane potential of the idiopathic pulmonary arterial hypertension PASMCs to that of the PASMCs from healthy donors.Our findings indicate that DHA activates PASMC KCa channels leading to vasorelaxation in pulmonary hypertension. This effect might provide a molecular explanation for the previously undescribed role of DHA as an acute vasodilator in pulmonary hypertension.