Published in

BMJ Publishing Group, Annals of the Rheumatic Diseases, 4(76), p. 748-755, 2016

DOI: 10.1136/annrheumdis-2016-209757

Links

Tools

Export citation

Search in Google Scholar

Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ObjectiveTo investigate the impact of systemic inhibition of interleukin 6 (IL-6) or signal transducer and activator of transcription (Stat3) in an experimental model of osteoarthritis (OA).MethodsExpression of major catabolic and anabolic factors of cartilage was determined in IL-6-treated mouse chondrocytes and cartilage explants. The anti-IL-6-receptor neutralising antibody MR16-1 was used in the destabilisation of the medial meniscus (DMM) mouse model of OA. Stat3 blockade was investigated by the small molecule Stattic ex vivo and in the DMM model.ResultsIn chondrocytes and cartilage explants, IL-6 treatment reduced proteoglycan content with increased production of matrix metalloproteinase (MMP-3 and MMP-13) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4 and ADAMTS-5). IL-6 induced Stat3 and extracellular signal-regulated kinase (ERK) 1/2 signalling but not p38, c-Jun N-terminal kinase or Akt. In the DMM model, Stat3 was activated in cartilage, but neither in the synovium nor in the subchondral bone. Systemic blockade of IL-6 by MR16-1 alleviated DMM-induced OA cartilage lesions, impaired the osteophyte formation and the extent of synovitis. In the same model, Stattic had similar beneficial effects on cartilage and osteophyte formation. Stattic, but not an ERK1/2 inhibitor, significantly counteracted the catabolic effects of IL-6 on cartilage explants and suppressed the IL-6-induced chondrocytes apoptosis.ConclusionIL-6 induces chondrocyte catabolism mainly via Stat3 signalling, a pathway activated in cartilage from joint subjected to DMM. Systemic blockade of IL-6 or STAT-3 can alleviate DMM-induced OA in mice.