Published in

BioMed Central, BMC Research Notes, 1(2), 2009

DOI: 10.1186/1756-0500-2-231

Links

Tools

Export citation

Search in Google Scholar

Zebrafish aplnra functions in epiboly

Journal article published in 2009 by Svanhild Nornes, Ben Tucker, Michael Lardelli ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: The zebrafish, Danio rerio, possesses the paralogous genes aplnra and aplnrb that are duplicates of an ancestral orthologue of the human APLNR gene encoding a G-protein coupled receptor that binds the peptide ligand APELIN and is required for normal cardiovascular function. aplnrb is required for migration of cells contributing to heart development in zebrafish embryos. aplnra is transcribed in a complex pattern during early development but its function in embryogenesis is largely unknown. Findings: Blockage of translation of aplnra mRNA in zebrafish embryos results in retarded or failed epiboly with the blastoderm apparently disconnected from the nuclei of the yolk syncytial layer. Gastrulation is also defective. Failure of correct tail extension is observed with ectopic structures resembling somites positioned dorsal to the spinal cord. Conclusion: aplnra, unlike its duplicate aplnrb, is essential for normal epiboly, although this function appears to be independent of signalling activated by zebrafish Apelin. The defects in epiboly caused by loss of aplnra activity appear, at least partially, to be due to a requirement for aplnra activity in the yolk syncytial layer. ; Svanhild Nornes, Ben Tucker and Michael Lardelli ; © 2009 Nornes et al; licensee BioMed Central Ltd.