Published in

American Physiological Society, Journal of Applied Physiology, 2(125), p. 605-614

DOI: 10.1152/japplphysiol.00877.2017

Links

Tools

Export citation

Search in Google Scholar

Mimicking a flow-limited human upper airway using a collapsible tube: relationships between flow patterns and pressures in a respiratory model

Journal article published in 2018 by Kaixian Zhu ORCID, Ramon Farré ORCID, Ira Katz, Sébastien Hardy, Pierre Escourrou
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The upper airway (UA) in humans is commonly modeled as a Starling resistor. However, negative effort dependence (NED) observed in some patients with obstructive sleep apnea (OSA) contradicts predictions based on the Starling resistor model in which inspiratory flow is independent of inspiratory driving pressure when flow is limited. In a respiratory bench model consisting of a collapsible tube and an active lung model (ASL5000), inspiratory flow characteristics were investigated in relation to upstream, downstream, and extra-luminal pressures (denoted as Pus, Pds, and Pout, respectively) by varying inspiratory effort (muscle pressure) from −1 to −20 cmH2O in the active lung. Pus was provided by a constant airway pressure device and varied from 4 to 20 cmH2O, and Pout was set at 10 and 15 cmH2O. Upstream resistance at onset of flow limitation and critical transmural pressure (Ptm) corresponding to opening of the UA were found to be independent of Pus, Pds, and Pout. With fixed Ptm, when Pds fell below a specific value (Pds′), inspiratory peak flow became constant and independent of Pds. NED plateau flow patterns at mid-inspiration (V̇n) were produced within the current bench setting when Pds fell below Pds′. V̇n was proportional to Pds, and the slope (ΔV̇n/ΔPds) increased linearly with Ptm. Ptm and Pds were the two final independent determinants of inspiratory flow. Our bench model closely mimics a flow-limited human UA, and the findings have implications for OSA treatment and research, especially for bench-testing auto-titrating devices in a more physiological way. NEW & NOTEWORTHY A respiratory model consisting of a collapsible tube was used to mimic a flow-limited human upper airway. Flow-limited breathing patterns including negative effort dependence were produced. Transmural and downstream pressures acting on the tube are the two independent determinants of the resulting inspiratory flow during flow limitation. The findings have implications for obstructive sleep apnea treatment and research, especially for bench-testing auto-titrating devices in a more physiological way.