Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(9), 2018

DOI: 10.1038/s41467-018-04845-x

Links

Tools

Export citation

Search in Google Scholar

Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSub-nano metal clusters often exhibit unique and unexpected properties, which make them particularly attractive as catalysts. Herein, we report a “precursor-preselected” wet-chemistry strategy to synthesize highly dispersed Fe2 clusters that are supported on mesoporous carbon nitride (mpg-C3N4). The obtained Fe2/mpg-C3N4 sample exhibits superior catalytic performance for the epoxidation of trans-stilbene to trans-stilbene oxide, showing outstanding selectivity of 93% at high conversion of 91%. Molecular oxygen is the only oxidant and no aldehyde is used as co-reagent. Under the same condition, by contrast, iron porphyrin, single-atom Fe, and small Fe nanoparticles (ca. 3 nm) are nearly reactively inert. First-principles calculations reveal that the unique reactivity of the Fe2 clusters originates from the formation of active oxygen species. The general applicability of the synthesis approach is further demonstrated by producing other diatomic clusters like Pd2 and Ir2, which lays the foundation for discovering diatomic cluster catalysts.