Published in

Bentham Science Publishers, Medicinal Chemistry, 4(15), p. 360-372, 2019

DOI: 10.2174/1573406414666180821103604

Links

Tools

Export citation

Search in Google Scholar

New N,C-Diaryl-1,2,4-triazol-3-ones. Synthesis and Evaluation as Anticancer Agents

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: A set of 2,5-diaryl-1,2,4-triazol-3-ones was synthesized in two steps and evaluated as regards their activity in some relevant biological targets related to cancer. Objective: This study is focused on the synthesis and the biological evaluation of 2,5-diaryl-1,2,4- triazol-3-ones. In this sense, the effect of the synthetic triazolones on the proliferation of HT-29 and A549 cancer cells and on HEK non-cancer cells has been measured. In addition, the effects of triazolones on the expression of hTERT, c-Myc and PD-L1 genes and on the production of c-Myc and PD-L1 proteins have also been evaluated. Method: A set of 2,5-diaryl-1,2,4-triazol-3-ones was synthesized in two steps. Firstly, N- (aminocarbonyl)-3-methoxybenzamide was prepared by coupling 3-methoxybenzoic acid and cyanamide followed by aqueous HCl hydrolysis. Then, the 2,5-diaryl-1,2,4-triazol-3-ones were obtained upon reaction of N-(aminocarbonyl)-3-methoxybenzamide with arylhydrazines in decaline at 170ºC. The ability of the triazolones to inhibit cell proliferation was measured against two human carcinoma cell lines (colorectal HT-29 and lung A549), and one non-tumor cell line (HEK- 293) by MTT assay. The downregulation of the synthetic triazolones on the expression of the hTERT, c-Myc and PD-L1 genes was measured by an RT-qPCR analysis. Their ability to regulate the expression of the c-Myc and PD-L1 proteins, as well as their direct interaction with c-Myc protein, was determined by the ELISA method. Finally, the direct interaction of triazolones with PD-L1 protein was assessed by the thermal shift assay. Results: Ten 2,5-diaryl-1,2,4-triazol-3-ones were synthesized and characterized by spectroscopic methods. A thorough study by 1H, 13C, 15N and 19F NMR spectroscopy showed that all the synthetic compounds exist as 4H-triazolones and not as hydroxytriazoles or 1H-triazolones. Some triazolones showed relatively high activities together with very poor toxicity in non-tumor cell line HEK-293. 2-(2-fluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (4) was particularly active in downregulating c-Myc and PD-L1 gene expression although 2-(4- chloro-2-fluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (8) is the one that combines the best downregulatory activities in the three genes studied. Considering protein expression, the most active compounds are 2-(4-fluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro- 3H-1,2,4-triazol-3-one (5) and 2-(2,4,6-trifluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro-3H- 1,2,4-triazol-3-one (10) (c-Myc expression) and 2-(2,3,5,6-tetrafluorophenyl)-5-(3-methoxyphenyl)- 2,4-dihydro-3H-1,2,4-triazol-3-one (11) and (8) (PD-L1 expression). Conclusion: Some of the triazolones studied have shown relevant activities in the inhibition of the hTERT, c-Myc and PD-L1 genes, and in the inhibition of c-Myc and PD-L1 protein secretion, the 2-(4-chloro-2-fluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (8) was found to be a particularly promising lead compound.